- · 《数字化用户》征稿要求[06/28]
- · 《数字化用户》投稿方式[06/28]
- · 《数字化用户》刊物宗旨[06/28]
数字化用户英语论文格式(论文英文数字格式)(2)
作者:网站采编关键词:
摘要:13年十大突破性技术(Breakthrough Technology)之首。有了深度学习,推荐系统可以更加深度地挖掘你内心的需求,并从海量的3D模型库中挑选出最合适的供你打
13年十大突破性技术(Breakthrough Technology)之首。有了深度学习,推荐系统可以更加深度地挖掘你内心的需求,并从海量的3D模型库中挑选出最合适的供你打印。
让我们先来看看人类的大脑是如何工作的。1981年的诺贝尔医学奖,颁发给了David Hubel和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献是,发现了人的视觉系统的信息处理是分级的。如图4-45所示,从视网膜(Retina)出发,经过低级的V1区提取边缘特征,到V2区的基本形状或目标的局部,再到高层的整个目标(如判定为一张人脸),以及到更高层的PFC(前额叶皮层)进行分类判断等。也就是说高层的特征是低层特征的组合,从低层到高层的特征表达越来越抽象和概念化,也即越来越能表现语义或者意图。
图4-45 人脑的视觉处理系统 (图片来源:Simon Thorpe)
这个发现激发了人们对于神经系统的进一步思考。大脑的工作过程,或许是一个不断迭代、不断抽象概念化的过程,如图4-46所示。例如,从原始信号摄入开始(瞳孔摄入像素),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定眼前物体的形状,比如是椭圆形的),然后进一步抽象(大脑进一步判定该物体是张人脸),最后识别眼前的这个人──正是大明星华。这个过程其实和我们的常识是相吻合的,因为复杂的图形,往往就是由一些基本结构组合而成的。同时我们还可以看出:大脑是一个深度架构,认知过程也是深度的。
图4-46 视觉的分层处理结构 (图片来源:Stanford)
而深度学习(Deep Learning),恰恰就是通过组合低层特征形成更加抽象的高层特征(或属性类别)。例如,在计算机视觉领域,深度学习算法从原始图像去学习得到一个低层次表达,例如边缘检测器、小波滤波器等,然后在这些低层次表达的基础上,通过线性或者非线性组合,来获得一个高层次的表达。此外,不仅图像存在这个规律,声音也是类似的。比如,研究人员从某个声音库中通过算法自动发现了20种基本的声音结构,其余的声音都可以由这20种基本结构来合成!
在进一步阐述深度学习之前,我们需要了解什么是机器学习(Machine Learning)。机器学习是人工智能的一个分支,而在很多时候,几乎成为人工智能的代名词。简单来说,机器学习就是通过算法,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测。
而深度学习又是机器学习研究中的一个新的领域,其动机在于建立可以模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如,图像、声音和文本。深度学习之所以被称为“深度”,是因为之前的机器学习方法都是浅层学习。深度学习可以简单理解为传统神经网络(Neural Network)的发展。大约二三十年前,神经网络曾经是机器学习领域特别热门的一个方向,这种基于统计的机器学习方法比起过去基于人工规则的专家系统,在很多方面显示出优越性。如图4-47所示,深度学习与传统的神经网络之间有相同的地方,采用了与神经网络相似的分层结构:系统是一个包括输入层、隐层(可单层、可多层)、输出层的多层网络,只有相邻层节点(单元)之间有连接,而同一层以及跨层节点之间相互无连接。这种分层结构,比较接近人类大脑的结构(但不得不说,实际上相差还是很远的,考虑到人脑是个异常复杂的结构,很多机理我们目前都是未知的)。
图4-47 传统的神经网络与深度神经网络
提示:人类大脑由千亿个神经元组成,同时每个神经元平均连接到其它几千个神经元,这样形成一个庞大的神经元网络。通过这种连接,神经元可以收发不同数量的能量,但它们对能量的接受并不是立即作出响应,而是先累加起来,只有当累加的总和达到某个临界阈值时才把能量发送给其它的神经元。而人工神经网络(Artificial Neural Networks, ANN)将人类神经网络作了数学上的抽象,如图4-47所示,将其抽象为输入层、输出层以及中间的若干隐层(Hidden Layer,用于层次化地对内在特征进行降维和抽象表达,相当于特征检测器),其中每层都有若干结点及连接这些点的边,通过在训练数据集上学习出边的权重(Weight)来建立模型。边所表征的函数(通常为非线性函数)的不同,对应于不同的神经网络。例如,第6章6.4.1节所介绍的感知机就是一种最简单的、不含任何隐层的前向(Feedforward)人工神经网络,其中的函数
被称为传递函数(Transfer Function)、而门限截止函数
文章来源:《数字化用户》 网址: http://www.szhyhbjb.cn/zonghexinwen/2022/1207/2762.html